Local Quasitriangular Hopf Algebras

نویسندگان

  • Shouchuan Zhang
  • Mark D. Gould
  • Yao-Zhong Zhang
چکیده

We find a new class of Hopf algebras, local quasitriangular Hopf algebras, which generalize quasitriangular Hopf algebras. Using these Hopf algebras, we obtain solutions of the Yang-Baxter equation in a systematic way. That is, the category of modules with finite cycles over a local quasitriangular Hopf algebra is a braided tensor category.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasitriangular (G-cograded) multiplier Hopf algebras

We put the known results on the antipode of a usual quasitriangular Hopf algebra into the framework of multiplier Hopf algebras. We illustrate with examples which can not be obtained by using classical Hopf algebras. The focus of the present paper lies on the class of the so-called G-cograded multiplier Hopf algebras. By doing so, we bring the results of quasitriangular Hopf group-coalgebras (a...

متن کامل

The quantum double for quasitriangular quasi-Hopf algebras

Let D(H) be the quantum double associated to a finite dimensional quasi-Hopf algebra H, as in [9] and [10]. In this note, we first generalize a result of Majid [15] for Hopf algebras, and then prove that the quantum double of a finite dimensional quasitriangular quasi-Hopf algebra is a biproduct in the sense of [4].

متن کامل

Braided Lie algebras and bicovariant differential calculi over co-quasitriangular Hopf algebras

Braided Lie algebras and bicovariant differential calculi over co-quasitriangular Hopf algebras. Abstract We show that if g Γ is the quantum tangent space (or quantum Lie algebra in the sense of Woronowicz) of a bicovariant first order differential calculus over a co-quasitriangular Hopf algebra (A, r), then a certain extension of it is a braided Lie algebra in the category of A-comodules. This...

متن کامل

Quasitriangular Structures on Cocommutative Hopf Algebras

The article is devoted to the describtion of quasitriangular structures (universal R-matrices) on cocommutative Hopf algebras. It is known that such structures are concentrated on finite dimensional Hopf subalgebras. In particular, quasitriangular structure on group algebra is defined by the pairs of normal inclusions of an finite abelian group and by invariant bimultiplicative form on it. The ...

متن کامل

Algebras and Hopf Algebras in Braided Categories

This is an introduction for algebraists to the theory of algebras and Hopf algebras in braided categories. Such objects generalise super-algebras and super-Hopf algebras, as well as colour-Lie algebras. Basic facts about braided categories C are recalled, the modules and comodules of Hopf algebras in such categories are studied, the notion of ‘braided-commutative’ or ‘braided-cocommutative’ Hop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006